Swelling behavior of nanoscale , shape - and size - specific , hydrogel particles fabricated using imprint lithography †
نویسندگان
چکیده
Recently a number of hydrogel-based microand nanoscale drug carriers have been reported including top down fabricated, highly monodisperse nanoparticles of specific sizes and shapes. One critical question on such approaches is whether in vivo swelling of the nanoparticles could considerably alter their geometry to a point where the potential benefit of controlling size or shape could not be realized. Little has been reported on experimental characterization of the swelling behavior of nanoscale hydrogel structures, and current theoretical understanding is largely based on bulk hydrogel systems. Using atomic force microscopy (AFM) and environmental scanning electron microscopy (ESEM) capsules, we have characterized the swelling behavior of nano-imprinted hydrogel particles of different sizes and aspect ratios. Our results indicate a size-dependent swelling which can be attributed to the effect of substrate constraint of as-fabricated particles, when the particles are still attached to the imprinting substrate. Numerical simulations based on a recently developed field theory and a nonlinear finite element method were conducted to illustrate the constraint effect on swelling and drying behavior of substrate-supported hydrogel particles of specific geometries, and compared closely with experimental measurements. Further, we present a theoretical model that predicts the size-dependent swelling behavior for unconstrained sub-micron hydrogel particles due to the effect of surface tension. Both experimental and theoretical results suggest that hydrogel swelling does not significantly alter the shape and size of highly crosslinked nanoscale hydrogel particles used in the present study.
منابع مشابه
Stop-flow lithography for the production of shape-evolving degradable microgel particles.
Microgel particles capable of bulk degradation have been synthesized from a solution of diacrylated triblock copolymer composed of poly(ethylene glycol) and poly(lactic acid) in a microfluidic device using stop-flow lithography (SFL). It has been previously demonstrated that SFL can be used to fabricate particles with precise control over particle size and shape. Here, we have fabricated hydrog...
متن کاملNanoscale silicon field effect transistors fabricated using imprint lithography
We report the fabrication and characterization of nanoscale silicon field effect transistors using nanoimprint lithography. With this lithographic technique and dry etching, we have patterned a variety of nanoscale transistor features in silicon, including 100 nm wire channels, 250-nm-diam quantum dots, and ring structures with 100 nm ring width, over a 232 cm lithography field with good unifor...
متن کاملFabrication of Poly(ethylene glycol) Hydrogel Structures for Pharmaceutical Applications using Electron beam and Optical Lithography.
Soft-polymer based microparticles are currently being applied in many biomedical applications, ranging from bioimaging and bioassays to drug delivery carriers. As one class of soft-polymers, hydrogels are materials, which can be used for delivering drug cargoes and can be fabricated in controlled sizes. Among the various hydrogel-forming polymers, poly(ethylene glycol) (PEG) based hydrogel syst...
متن کاملSwelling-induced Instability of Substrate-attached Hydrogel Lines
Microand nano-scale hydrogel lines can be fabricated on substrates by top-down approaches such as lithography and micro/nano-imprint. When in contact with a solvent, the hydrogel lines swell under the constraint of the substrate, often resulting in distorted shapes or instability patterns. In this paper, using a nonlinear finite element method, the effects of material and geometry on swell-indu...
متن کاملInvestigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite
The objective of the present study is to develop and investigate the swelling behavior of pH-sensitive Superporous Hydrogel (SPH) and SPH composite (SPHC). A novel superporous hydrogel containing poly (methacrylic acid-co-acrylamide) was synthesized from methacrylic acid and acrylamide through the aqueous solution polymerization, using N,N-methylenebisacrylamide as a crosslinker and ammonium...
متن کامل